3.3V Quad-Port Bypass with Repeater


#### Abstract

General Description The MAX3752/MAX3753 quad-port bypass ICs are designed for use in the Fibre Channel Arbitrated Loop topology. These devices consist of four serially connected port bypass circuits (PBCs) and a repeater that provides clock and data recovery (CDR). The quad-port bypass circuit allows connection of up to four Fibre Channel L-Ports, which can each be enabled or bypassed by controlling the PBC select inputs. Additional quad PBCs can be cascaded for applications requiring more than four L-Ports. To reduce the external parts count, all signal inputs and outputs have internal termination resistors. The MAX3752/MAX3753 comply with Fibre Channel jitter tolerance requirements and can recover data signals with up to 0.7 unit intervals (UIs) of high-frequency jitter. When the repeater is not needed, it can be disabled to reduce power consumption. A fully integrated phaselocked loop (PLL) provides a frequency lock indication and does not need an external reference clock. Two pin-compatible versions of the quad PBC are avail-able-the MAX3752 for 2.125 Gbps or 1.063 Gbps operation, and the MAX3753 for 1.063Gbps operation.


## Applications

### 2.125Gbps Fibre Channel

1.063Gbps Fibre Channel

Fibre Channel Data Storage Systems
Storage Area Networks
Fibre Channel Hubs

Typical Operating Circuit appears at end of data sheet.

Features

- Four High-Speed Data Ports
- Meets Fibre Channel Jitter Tolerance Requirements
- Large Output Signal Swing (>1000mVp-p)
- +3.0V to +3.6V Single-Supply Voltage
- On-Chip Termination Resistors Compatible with $75 \Omega$ Transmission Lines at All Ports

Ordering Information

| PART | TEMP. RANGE | PIN-PACKAGE |
| :--- | :---: | :--- |
| MAX3752CCM | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 48-pin TQFP-EP* |
| MAX3753CCM ${ }^{* *}$ | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 48 -pin TQFP-EP* |

*EP = Exposed pad
${ }^{* *}$ Future product-contact factory for availability.

Pin Configuration


### 2.125Gbps/1.063Gbps, 3.3V Quad-Port Bypass with Repeater

## ABSOLUTE MAXIMUM RATINGS

Supply Voltage, VCc..............................................-0.5V to +5.0 V
Current into OUT+, OUT-, LOUT1+, LOUT1-, LOUT2+, LOUT2-,
LOUT3+, LOUT3-, LOUT4+, LOUT4- ...................... 0 to 22mA Voltage at OUT+, OUT-, LOUT1+, LOUT1-, LOUT2+, LOUT2LOUT3+, LOUT3-, LOUT4+, LOUT4-
( $\left.V_{C C}-1.65 \mathrm{~V}\right)$ to $\left(V_{C C}+0.5 \mathrm{~V}\right)$
Voltage at IN+, IN-, LIN1+, LIN1-, LIN2+, LIN2-,LIN3+, LIN3-,
LIN4+, LIN4-.........................................-0.5V to (VCC +0.5 V )
Voltage at CLKEN, CFP, CFM, SEL1, SEL2, SEL3, SEL4,
CDREN, LOCKEN $\qquad$ .-0.5 V to $\left(\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}\right)$

Voltage at LOCK............................................. 0.5 V to (VCC +0.5 V )
Current at LOCK
-10 mA to +1 mA
Continuous Power Dissipation ( $\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$ )
TQFP-EP (derate $27.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ )
.2W
Operating Junction Temperature Range..........$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range ............................. $50^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) ................................. $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V} C \mathrm{C}=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. Typical values are at $+3.3 \mathrm{~V}, \mathrm{CLKEN}=\mathrm{LOW}, \mathrm{LOCKEN}=\mathrm{LOW}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)


# 2.125Gbps/1.063Gbps, 3.3V Quad-Port Bypass with Repeater 

## AC ELECTRICAL CHARACTERISTICS—MAX3752 Operating at 2.125Gbps

$\left(\mathrm{VCC}=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. Typical values are at $+3.3 \mathrm{~V}, \mathrm{CF}=0.22 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Notes $2-7$ )

| PARAMETER | CONDITIONS | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Data Rate |  | $2.125 \pm 100 \mathrm{ppm}$ |  |  | Gbps |
| Output Edge Speed | 20\% to 80\% | 75 | 115 | 160 | ps |
| Random Jitter at OUT $\pm$ | Pattern $=$ K28.7+, CDR disabled |  | 1.5 |  | pSRMS |
|  | Pattern $=$ K28.7+, CDR enabled |  | 2.3 |  |  |
|  | Pattern = CRPAT, CDR enabled (Note 8) |  | 3.6 |  |  |
| Deterministic Jitter at OUT $\pm$ | Pattern $=$ K28.5, CDR disabled |  | 39 | 82 | psp-p |
|  | Pattern $=$ K28.5, CDR enabled |  | 27 | 47 |  |
|  | Pattern = FC-RPAT, CDR enabled (Note 8, jitter applied) |  | 52 | 80 |  |
| Total Jitter at OUT $\pm$ | Pattern = CRPAT, CDR enabled | 72 |  |  | psp-p |
|  | Pattern = CRPAT, CDR enabled (Note 8, jitter applied) | 100 |  |  |  |
| Jitter Tolerance$\left(B E R=10^{-12}\right)$ | $\mathrm{f}=85 \mathrm{kHz}$ sine wave (Notes 8, 9) | $1.5>4.22$ |  |  | Ulp-p |
|  | $\mathrm{f}=1.27 \mathrm{MHz}$ sine wave (Notes 8,9 ) | 0.1 | $>0.85$ |  |  |
|  | $\mathrm{f}=10 \mathrm{MHz}$ sine wave (Notes 8, 9) | $0.1>0.47$ | >0.47 |  |  |
| Deterministic Jitter Tolerance |  | 0.38 |  |  | $\mathrm{Ul}_{\mathrm{p}-\mathrm{p}}$ |
| Total High-Frequency Jitter Tolerance | BER $=10^{-12}$ ( Note 10) | 0.7 |  |  | Ulp-p |
| CDR Lock Time | Pattern = CJTPAT | 4.4 |  |  | ms |
| Propagation Delay | IN $\pm$ to OUT $\pm$ (ports bypassed, CDR enabled) |  |  | 10 | ns |
|  | LIN $n \pm$ to LOUT( $\mathrm{n}+1) \pm$ (port normal mode) |  |  | 2 |  |
|  | SEL( $n$ ) rising edge to data valid at LOUT( $n+1) \pm$ or OUT $\pm$ (port normal mode) | 8 |  |  |  |
|  | SEL( $n$ ) falling edge to data valid at LOUT( $\mathrm{n}+1) \pm$ or OUT $\pm$ (port bypass mode) | 8 |  |  |  |

### 2.125Gbps/1.063Gbps,

3.3V Quad-Port Bypass with Repeater

## AC ELECTRICAL CHARACTERISTICS—MAX3752 Operating at 1.063Gbps

(VCC $=+3.0 \mathrm{~V}$ to $+3.6 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. Typical values are at $+3.3 \mathrm{~V}, \mathrm{CF}=0.22 \mu \mathrm{~F}, \mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Notes 2-7)

| PARAMETER | CONDITIONS | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Data Rate |  | $1.063 \pm 100 \mathrm{ppm}$ |  |  | Gbps |
| Output Edge Speed | 20\% to 80\% | 75 | 115 | 160 | ps |
| Random Jitter at OUT $\pm$ | Pattern $=$ K28.7+, CDR disabled |  | 1.5 |  | pSRMS |
|  | Pattern $=$ K28.7+, CDR enabled |  | 2.3 |  |  |
|  | Pattern = CRPAT, CDR enabled (Note 8) |  | 4.2 |  |  |
| Deterministic Jitter at OUT $\pm$ | Pattern $=$ K28.5, CDR disabled |  | 39 | 82 | psp-p |
|  | Pattern $=$ K28.5, CDR enabled |  | 27 | 47 |  |
|  | Pattern = FC-RPAT, CDR enabled (Note 8, jitter applied) |  | 58 | 110 |  |
| Total Jitter at OUT $\pm$ | Pattern = CRPAT, CDR enabled | 59 |  |  | psp-p |
|  | Pattern = CRPAT, CDR enabled (Note 8, jitter applied) | 116 |  |  |  |
| Jitter Tolerance$\left(B E R=10^{-12}\right)$ | $\mathrm{f}=42.7 \mathrm{kHz}$ sine wave (Notes 8, 9) | $1.5>2.81$ |  |  | $\mathrm{Ul}_{\mathrm{p}-\mathrm{p}}$ |
|  | $\mathrm{f}=637 \mathrm{MHz}$ sine wave (Notes 8, 9) | 0.1 | $>0.5$ |  |  |
|  | $\mathrm{f}=5 \mathrm{MHz}$ sine wave (Notes 8,9 ) | 0.1 | $>0.22$ |  |  |
| Deterministic Jitter Tolerance |  | 0.19 |  |  | Ulp-p |
| Total High-Frequency Jitter Tolerance | BER $=10^{-12}($ Note 10) | 0.35 |  |  | $\mathrm{Ul}_{\mathrm{p}-\mathrm{p}}$ |
| CDR Lock Time | Pattern = CJTPAT | 4.4 |  |  | ms |
| Propagation Delay | IN $\pm$ to OUT $\pm$ (ports bypassed, CDR enabled) |  |  | 10 | ns |
|  | LINn $\pm$ to LOUT( $\mathrm{n}+1$ ) $\pm$ (port normal mode) |  |  | 2 |  |
|  | SEL( n ) rising edge to data valid at LOUT $(\mathrm{n}+1) \pm$ or OUT $\pm$ (port normal mode) | 8 |  |  |  |
|  | $\operatorname{SEL}(\mathrm{n})$ falling edge to data valid at $\operatorname{LOUT}(\mathrm{n}+1) \pm$ or $\operatorname{OUT} \pm$ (port bypass mode) | 8 |  |  |  |

# 2.125Gbps/1.063Gbps, 3.3V Quad-Port Bypass with Repeater 

## AC ELECTRICAL CHARACTERISTICS—MAX3753 Operating at 1.063Gbps

$\left(\mathrm{VCC}=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. Typical values are at $+3.3 \mathrm{~V}, \mathrm{CF}=0.22 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Notes 2-7)


### 2.125Gbps/1.063Gbps, 3.3V Quad-Port Bypass with Repeater

## AC ELECTRICAL CHARACTERISTICS—MAX3753 Operating at 1.063Gbps (continued)

Note 1: Includes output currents.
Note 2: AC characteristics are guaranteed by design and characterization.
Note 3: K28.7+ Pattern: 0011111000.
Note 4: Fibre Channel Random Pattern in hex (FC-RPAT): 3EB0 5C67 85D3 172C A856 D84B B6A6 65.
Note 5: Compliant Random Pattern in hex (CRPAT):

| Pattern Sequence | Repetitions |
| :--- | :---: |
| 3E AA 2A AA AA | 6 |
| 3E AA A6 A5 A9 | 1 |
| 86 BA 6C64 75 D0 E8 DC A8 B4 79 49 EA A6 65 | 16 |
| 72 31 9A 95 AB | 1 |
| C1 6A AA 9A A6 | 1 |

Note 6: K28.5 Pattern: 00111110101100000101.
Note 7: Compliant Jitter Tolerance Pattern in Hex (CJTPAT):
Pattern Sequence Repetitions
3E AA 2A AA AA
6
3E AA A6 A5 A9 1
87 1E 3871 E3 41
87 1E 3870 BC 78 F4 AA AA AA 1
AA AA AA AA AA 12
AA A1 5555 E3 87 1E 3871 E1 1
AB 9C 9686 E6 1
C1 6A AA 9A A6 1
Note 8: Parameter measured with 0.38 UI deterministic and 0.22 UI random jitter ( $\mathrm{BER}=10-12$ ) applied to the input.
Note 9: Jitter tolerance measurement exceeds the capability of the test equipment used.
Note 10: Parameter measured with 0.1 UI sinusoidal jitter at 10 MHz plus 0.38 UI deterministic jitter applied to the input.

Typical Operating Characteristics
$\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ and $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}$, unless otherwise noted.)


# 2.125Gbps/1.063Gbps, 3.3V Quad-Port Bypass with Repeater 

Typical Operating Characteristics (continued)
( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}$, unless otherwise noted.)

MAX3752
OUTPUT JITTER—BATHTUB PLOT


MAX3752
INPUT VSWR
vs. FREQUENCY (BY SIMULATION)


MAX3752
OUTPUT JITTER—BATHTUB PLOT


MAX3752 OUTPUT VSWR vs. FREQUENCY (BY SIMULATION)


### 2.125Gbps/1.063Gbps,

3.3V Quad-Port Bypass with Repeater

Pin Description

| PIN | NAME | FUNCTION |
| :---: | :---: | :---: |
| $\begin{gathered} 1,4,7,8,11,26, \\ 29,30,33,36, \\ 39,42,43,46 \end{gathered}$ | GND | Electrical Ground |
| 2 | LIN1- | Inverted Data Input for L-Port 1 |
| 3 | LIN1+ | Noninverted Data Input for L-Port 1 |
| 5 | LOUT1- | Inverted Data Output for L-Port 1 |
| 6 | LOUT1+ | Noninverted Data Output for L-Port 1 |
| 9 | IN - | Inverted Data Input |
| 10 | $1 \mathrm{~N}+$ | Noninverted Data Input |
| 12 | CLKEN | Clock Enable. A TTL high level enables clock output at L-Port 1. |
| 13,16, 21, 24 | VCC | Positive Supply Voltage |
| 14 | CFP | CDR Filter Capacitor Positive Connection |
| 15 | CFM | CDR Filter Capacitor Negative Connection |
| 17 | SEL1 | Select 1. A TTL low on SEL1 selects data from IN $\pm$. TTL high on SEL1 selects data from LIN1 $\pm$. |
| 18 | SEL2 | Select 2. A TTL low on SEL2 selects data from the previous port bypass circuit. A TTL high on SEL2 selects data from LIN2土. |
| 19 | SEL3 | Select 3. A TTL low on SEL3 selects data from the previous port bypass circuit. A TTL high on SEL3 selects data from LIN3土. |
| 20 | SEL4 | Select 4. A TTL low on SEL4 selects data from the previous port bypass circuit. A TTL high on SEL4 selects data from LIN4 $\pm$. |
| 22 | CDREN | CDR Enable Input (TTL). A high input enables the CDR for data recovery. A low input disables the CDR (no data recovery). |
| 23 | LOCKEN | Lock Enable Input (TTL). A high input enables the LOCK output. A low input disables the LOCK output. |
| 25 | LOCK | CDR Lock Output. Enabled by LOCKEN. A high output indicates the CDR PLL is locked. When LOCKEN is low, LOCK is high. |
| 27 | OUT+ | Noninverted Data Output |
| 28 | OUT- | Inverted Data Output |
| 31 | LIN4- | Inverted Data Input for L-Port 4 |
| 32 | LIN4+ | Noninverted Data Input for L-Port 4 |
| 34 | LOUT4- | Inverted Data Output for L-Port 4 |
| 35 | LOUT4+ | Noninverted Data Output for L-Port 4 |
| 37 | LIN3- | Inverted Data Input for L-Port 3 |
| 38 | LIN3+ | Noninverted Data Input for L-Port 3 |
| 40 | LOUT3- | Inverted Data Output for L-Port 3 |
| 41 | LOUT3+ | Noninverted Data Output for L-Port 3 |
| 44 | LIN2- | Inverted Data Input for L-Port 2 |
| 45 | LIN2+ | Noninverted Data Input for L-Port 2 |
| 47 | LOUT2- | Inverted Data Output for L-Port 2 |
| 48 | LOUT2+ | Noninverted Data Output for L-Port 2 |
| EP | $\begin{gathered} \text { Exposed } \\ \text { Pad } \end{gathered}$ | Ground. The exposed pad must be soldered to the circuit board for proper thermal performance. |

# 2.125Gbps/1.063Gbps, 3.3V Quad-Port Bypass with Repeater 



Figure 1. Functional Diagram

## Detailed Description

The MAX3752/MAX3753 quad PBCs consist of an input buffer, a clock/data recovery circuit (for optional data recovery), four serially connected port bypass circuits, and an output buffer (Figure 1). The circuit design is optimized for both high-speed (1Gbps to 2Gbps) and low-voltage (+3.3V) operation.

## Input Buffer

The input buffer provides line termination and level conversion. It accepts a differential input voltage of 200 mV to 2200 mV at the $\mathrm{IN}+$ and IN - pins. Internal resistors terminate each input to $75 \Omega$ ( $150 \Omega$ total between the two inputs), eliminating the need for external termination resistors in most applications (see Applications Information for a suggested interface to $50 \Omega$ systems).

Clock and Data Recovery The purpose of the clock and data recovery (CDR) is to improve jitter transfer performance by attenuating jitter that may be present in the input data. The CDR can recover data signals that are corrupted by up to 0.7 UI of high-frequency jitter ( $\mathrm{BER}=10^{-12}$ ). When data recovery is not needed, the CDR may be disabled in order to save power.
The input buffer drives the CDR circuit, as well as one input of a 2:1 multiplexer. A TTL high on the CDR enable pin (CDREN) enables the CDR and connects the CDR data output to the port bypass circuits. The recovered
clock signal is available for test purposes at LOUT1 (the output of the first port bypass circuit) when the clock enable input (CLKEN) is set to a TTL high level. A TTL low on CDREN disables the CDR and connects the input buffer output directly to the port bypass circuits.

## Port Bypass Circuits

The output of the 2:1 input multiplexer drives a cascaded series of four PBCs. Each PBC consists of a differential output buffer, a differential input buffer, and a 2:1 multiplexer. The multiplexer select input (SELn) controls which multiplexer input is connected to the multiplexer output. A TTL low on the multiplexer select pin causes the data signal from the previous stage to be connected to the multiplexer output (port bypass mode). A TTL high on the multiplexer select pin causes the data signal from the input buffer to be connected to the multiplexer output (port enable mode). The output of the last PBC drives the output buffer.

Output Buffer
The output signal of the last PBC drives the differential high-power output buffer. The output buffer drives the output port (OUT $\pm$ ). Internal resistors terminate each output to $75 \Omega$ ( $150 \Omega$ total between the two outputs), eliminating the need for external termination resistors in most applications (see Applications Information for a suggested interface to $50 \Omega$ systems). The output buffer produces a differential output voltage of 1000 mV to 1600 mV when driving a differential $150 \Omega$ load.

### 2.125Gbps/1.063Gbps,

 3.3V Quad-Port Bypass with Repeater

Figure 2. Disk Array Implemented with Port Bypass Circuits

## Applications Information

The MAX3752/MAX3753 quad-port bypass circuits are designed for hard disk array applications of the Fibre Channel Arbitrated Loop network protocol.
A drive array is a collection of hard disk drives (called physical drives) that are connected together. The total storage capacity of the array of physical drives can be divided into one or more subsets (called logical drives) that may be spread over all of the physical drives in the array. For example, a computer accessing the drive array might "see" it as two logical drives (D: and E:, for example) that each have a storage capacity of 20 GB , even though the actual array is made up of eight physical 5GB drives.
In applications where data storage reliability is critical, it may be desirable to create a disk array where the data is stored redundantly on more than one physical drive. This type of system is generally called a redundant array of inexpensive disks (RAIDs). If a physical drive fails, it may be replaced and the lost data can be restored.
Drive arrays are also useful in applications that require fast access to stored data. The data may be distributed over physical drives connected in a parallel arrangement, enabling access to data concurrently from multiple drives in the array. This makes it possible to achieve I/O
rates much greater than what is feasible with nonarrayed drives.
The Fibre Channel Arbitrated Loop protocol enables multiple physical drives to be connected in a loop topology. Each physical drive is connected to the Fibre Channel loop through an L-Port that may be individually addressed and controlled to create the array of logical drives. Data is transmitted over the loop as an encoded serial bit stream. Using the Fibre Channel Arbitrated Loop protocol, the configuration of the disk array can be rearranged under software control to achieve desired objectives (such as data reliability or fast access).
The port bypass circuit allows any L-Port to be enabled (connected to the network) or bypassed (disconnected from the network) while the network is operating. This enables hot swapping of physical drives (inserting or removing physical drives while the network is operating) so that drives may be replaced with minimal disruption to the disk array system. Figure 2 shows the disk array.

Input/Output Structures Figures 3 and 4 show models for the MAX3752/ MAX3753 inputs and outputs.

# 2.125Gbps/1.063Gbps, 3.3V Quad-Port Bypass with Repeater 



Figure 3. MAX3752/MAX3753 Input Structure

## Cascading Port Bypass Circuits

Two or more MAX3752/MAX3753 quad PBCs can be cascaded by directly connecting the OUT+ and OUTpins of one quad PBC to the $\mathrm{IN}+$ and IN - pins of the next quad PBC. See Typical Operating Circuit.

## Interfacing to 50 Systems

Figure 5 shows examples of resistive impedance transforming networks that can be used to interface between the $75 \Omega$ input/output structure of the MAX3752/ MAX3753 and $50 \Omega$ systems. The characteristics of the two examples shown can be derived by referring to Figures 3, 4, and 5. The top configuration in Figure 5 is useful in designs where the parallel $300 \Omega$ resistors can be placed very close to the input/output pins of the IC. In this case, the $50 \Omega$ transmission lines should connect directly to the IC.
The bottom configuration in Figure 5 provides a better impedance match than the top configuration for designs
where $75 \Omega$ transmission lines are connected between the input/output pins of the IC and the resistive impedance transforming networks.
Neither of the two configurations in Figure 5 provides $100 \%$ efficient voltage coupling. In the top configuration, the input voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$ is the same as the source voltage (VSRC), but the output/load voltage (VOUT = VLOAD for this case) is reduced by a factor of 0.67 because the output is loaded with an equivalent of $75 \Omega$. (The data sheet specification for output voltage swing is based on a $150 \Omega$ load.) In the bottom configuration, $\mathrm{V}_{\mathrm{IN}}$ is attenuated by a factor of 0.64 from $\mathrm{V}_{\text {SRC }}$, and VLOAD is attenuated by a factor of 0.43 from VOUT.
For example, a source voltage of 625 mV will result in an input voltage of 625 mV for the top configuration, but only 400 mV for the bottom configuration. Also, a typical output voltage swing of 1400 mV into a differential $150 \Omega$ load will cause the corresponding load voltage to be


Figure 4. MAX3752/MAX3753 Output Structure

940 mV for the top configuration and 600 mV for the bottom configuration.

Layout Considerations
For best performance, carefully lay out the PC board using high-frequency techniques. Filter voltage supplies, keep ground connections short, and use multiple vias where possible. Use controlled impedance transmission lines to interface with the MAX3752/MAX3753 high-speed inputs and outputs. Power-supply decoupling capacitors should be placed very close to VCC pins. Isolate the input signals from the output signals as much as possible.


Figure 5. Interfaces to $50 \Omega$ Systems

### 2.125Gbps/1.063Gbps, 3.3V Quad-Port Bypass with Repeater


2.125Gbps/1.063Gbps,
3.3V Quad-Port Bypass with Repeater
$\qquad$


# 2.125Gbps/1.063Gbps, 3.3V Quad-Port Bypass with Repeater 

## NDTES:

1. ALL DIMENSIONS AND TILERANCING CDNFDRM TD ANSI Y14.5-1982
2. DATUM PLANE -H- IS LICATED AT MDLD PARTING LINE AND CIINCIDENT WITH LEAD, WHERE LEAD EXITS PLASTIC BDDY AT BOTTDM DF PARTING LINE.
3. DIMENSIDNS DI AND EI DI NDT INCLUDE MDLD PRDTRUSIDN. ALLOWABLE MOLD PROTRUSION IS 0.254 MM DN DI AND EI DIMENSIDNS
THE TOP OF PACKAGE IS SMALLER THAN THE BOTTOM DF PACKAGE BY 0.15 MILLImETERS.
4. DIMENSIDN b DIES NOT INCLUDE DAMBAR PROTRUSIDN. ALLDWABLE DAMBAR PROTRUSION SHALL BE 0.08 MM TOTAL IN EXCESS DF THE b DIMENSIDN AT MAXIMUM MATERIAL CDNDITIDN.
5. CINTRDLLING DIMENSIDN MILLIMETER.
6. THIS GUTLINE CDNFORMS TO JEDEC PUBLICATION 95 REGISTRATION MD-I36, VARIATIUNS AC AND AE
7. LEADS SHALL BE CDPLANAR WITHIN . 004 INCH.
8. EXPDSED DIE PAD SHALL BE CDPLANAR WITH BITTOM DF PACKAGE WITHIN 2 MILS (. 05 MM).
9. DIMENSIDNS $X$ \& Y APPLY TO EXPOSED PAD (EP) VERSIONS ONLY. SEE INDIVIDUAL PRODUCT datasheet ta determine if a praduct uses expased pad packace.

| $\begin{aligned} & s \\ & Y \\ & \text { Y } \\ & \text { B } \\ & \text { O } \\ & \text { L } \end{aligned}$ | JEDEC VARIATION <br> ALL DIMENSIDNS IN MILLIMETERS |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | AC |  |  | AE |  |  |
|  | MIN. | NDM. | MAX. | MIN. | NDM. | MAX. |
| A | \% | F | 1.20 | \% | Cr | 1.20 |
| $A_{1}$ | 0.05 | 0.10 | 0.15 | 0.05 | 0.10 | 0.15 |
| As | 0.95 | 1.00 | 1.05 | 0.95 | 1.00 | 1.05 |
| D | 9.00 BSC. |  |  | 9.00 BSC. |  |  |
| $\mathrm{D}_{1}$ | 7.00 BSC. |  |  | 7.00 BSC. |  |  |
| E | 9.00 BSC. |  |  | 9.00 BSC. |  |  |
| $E_{1}$ | 7.00 BSC. |  |  | 7.00 BSC. |  |  |
| L | 0.45 | 0.60 | 0.75 | 0.45 | 0.60 | 0.75 |
| M | 0.15 | 3 | 3 | 0.14 | $3 \times$ | 3 |
| $N$ | 32 |  |  | 48 |  |  |
| e | 0.80 BSC. |  |  | 0.50 BSC. |  |  |
| $b$ | 0.30 | 0.37 | 0.45 | 0.17 | 0.22 | 0.27 |
| b1 | 0.30 | 0.35 | 0.40 | 0.17 | 0.20 | 0.23 |
| * $\times$ | 3.20 | 3.50 | 3.80 | 3.70 | 4.00 | 4.30 |
| WY | 3.20 | 3.50 | 3.80 | 3.70 | 4.00 | 4.30 |



# 2.125Gbps/1.063Gbps, 3.3V Quad-Port Bypass with Repeater 

NOTES

